

PLANNING COVERAGE CAMPAIGNS FOR MISSION DESIGN AND ANALYSIS: CLASP FOR THE
PROPOSED DESDYNI MISSION

Russell Knight (1), David McLaren (1), and Steven Hu (1)

(1) Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

<first name>.<last name>@jpl.nasa.gov

ABSTRACT

Mission design and analysis present challenges in that
almost all variables are in constant flux, yet the goal is
to achieve an acceptable level of performance against a
concept of operations, which might also be in flux. To
increase responsiveness, our approach is to use
automated planning tools that allow for the continual
modification of spacecraft, ground system, staffing, and
concept of operations while returning metrics that are
important to mission evaluation, such as area covered,
peak memory usage, and peak data throughput. We have
applied this approach to DESDynI (Deformation,
Ecosystem Structure, and Dynamics of Ice) mission
design concept using the CLASP (Compressed Large-
scale Activity Scheduler/Planner) planning system [7],
but since this adaptation many techniques have changed
under the hood for CLASP and the DESDynI mission
concept has undergone drastic changes, including that it
has been renamed the Earth Radar Mission. Over the
past two years, we have run more than fifty simulations
with the CLASP-DESDynI adaptation, simulating
different mission scenarios with changing parameters
including targets, swaths, instrument modes, and data
and downlink rates. We describe the evolution of
simulations through the DESDynI MCR (Mission
Concept Review) and afterwards.

1. INTRODUCTION

As mission designs evolve, some form of mission
evaluation is necessary to determine how much science
could be done with a given mission design. Historically,
such evaluation was approximated, in the end leading to
either missions that were very simple that could have
done more or missions that promised too much.
Generating high-fidelity mission plans is costly, yet a
complete mission plan is the only real artifact that can
be defended both from a scientific point of view and an
engineering point of view. Enter automated planning
and scheduling. Previously, we have reported on using
CLASP to generate high-fidelity mission plans that can
be evaluated by both scientists and engineers. But, new
changes have forced us to increase the capability of
CLASP to handle new challenges in the DESDynI
domain.

First, we describe our history with CLASP and the

DESDynI concept. We characterize the types of
analyses needed for mission design evaluation and some
of our iterations providing these analyses.

Then, we describe in detail the specific adaptation of
CLASP proposed for DESDynI, including duty cycle,
memory, downlink rates and visibilities, target sets and
coverage requirements, and throughput limits. We then
detail the way that CLASP uses the adaptation and
instance information to produce a schedule.

CLASP can compress problems when they get too large
for memory at a cost in terms of execution time, but we
have discovered that this capability is largely
unnecessary in that proper parameterization of the
problem can keep it from becoming too large, even for
huge campaigns spanning months or years, but planning
at single second resolution. We describe the techniques
we use to avoid filling memory, including sequencing of
target sets (certain schedules can be planned, with
subsequent schedules being interleaved into the
previously scheduled observation plans), and choice of
spatial decomposition parameters.

There are different ways in which CLASP can
decompose spatial representations, from decomposing
the globe into pixels of fixed size to using polygon
representations of arbitrary resolution aka shards. Each
of these has advantages and disadvantages, and we
discuss the results of using these techniques in the
context of the DESDynI mission concept. Finally, the
overarching search algorithm of CLASP is described in
detail using the DESDynI mission design as our
example domain. We describe the decomposition of the
possible visibilities and requested target sets into pixels
or shards, and how this representation gives us access to
information at runtime at constant-time speed. We
describe how squeaky-wheel optimization works,
including our techniques of conformant synergistic
scheduling, where targets are added to observations
where we can prove that no priority inversion is taking
place for the target.

2. The DESDynI Concept

The objectives of the proposed DESDynI mission
concept are to "determine the likelihood of earthquakes,
volcanic eruptions, and landslides, predict the response

of ice sheets to climate change and impact on the sea
level, characterize the effects of changing climate and
land use on species habitats and carbon budget, [and]
monitor the migration of fluids associated with
hydrocarbon production and groundwater resources."
[4] This is accomplished using an L-band RADAR with
multiple polarizations. Further details about the
DESDynI concept can be found on either the mission's
web-site [4] or from the various IEEE Geoscience and
Remote Sensing Symposia [5][9].

2.1. Simulation Background

The DESDynI simulations have been a long-running
iterative process influencing the design of the proposed
DESDynI mission, the development of CLASP, and
further simulations that are run. Each simulation run
with CLASP answers some questions about
performance as it creates new ones. Additionally, some
simulations generate requests for more output from
CLASP or for new features in scheduling, and adding
these to the CLASP core creates new possibilities for
future simulations.

Most DESDynI simulations cover one quarter or
“season” of a year (roughly 90 days in length). Each
quarter is divided into equal-length cycles. There would
be three major campaigns of interest in the DESDynI
mission concept, with several subgroupings: ice (further
divided into sea ice, land ice, and high-priority ice),
vegetation (leaf on, leaf off, dry, wet), and land (global
strain rate, anthropogenic deformation, and volcanic).
Many of these campaigns would require one or more
observations per cycle; some would require only one
observation during an entire season. Some campaigns
would require multiple looks (observations on both
ascending and descending passes) to be satisfied.
Finally, the target areas for campaigns would vary by
quarter; sea ice targets change every quarter, and
vegetation targets are most extensive in summer-time,
when they cover most land in the northern hemisphere.
For this reason summer quarters tend to be the most
difficult to schedule while meeting science goals.

There are three major instrument modes used in the
simulations: SP (single pol, required for most ice and
land targets), LBSP (low-bandwidth single pol, suitable
for sea ice and some land targets), and QP (quad- pol,
usually required for vegetation targets). Quad-pol is the
most data-intensive of these modes, often requiring
more than 2 Gbps to take, with the narrowest swath,
while LBSP has the lowest data requirements and the
widest swath. Many simulations explore the use of
additional modes (like QQP or “quasi-quad- pol”) to
meet science goals, and most define a hierarchy where
higher data rate modes can satisfy lower modes.
Simulations also define swaths of varying sizes. Early
DESDynI simulations created QP observations on the

narrowest swath, and LBSP/SP observations on wider
swaths. In later simulations, the size differences
between swaths became much smaller, and only the
narrowest swath was used.

The goal of each simulation is to model the science goal
satisfaction achievable by a particular DESDynI mission
configuration, expressed as the percentage of targets
satisfied both overall and within each campaign. Each
simulation can vary a variety of parameters, including:
• Target sets and observation requirements (frequency

and look requirements)
• Quarter and cycle length
• Swath sizes and temporal resolutions (60 second, 15

second, or 5 second segments). Observation
resolution is the same as swath resolution.

• Instrument modes, data rates, and
domination/satisfaction hierarchy

• Downlink rates and schedules
• Campaign priority
• Onboard recorder size and initial memory usage

2.2. Evolution of Simulations

Early CLASP simulations for the DESDynI mission
concept used simple swaths and ample downlinks.
They began with 90 and 180 km swaths, for QP and SP
modes, divided into 60-second segments. 45 minutes of
downlink time was scheduled per orbit at 1000 Mbps.
In most simulations this level of downlink is a dream
scenario, used to model an “unconstrained” case to test
what the spacecraft could capture without memory
constraints. Early simulations allowed the spacecraft to
alternate between left and right rolled modes as needed
to capture targets. Six 16-day cycles were simulated.

After these simple beginnings, more realistic swaths and
stingier downlinks were introduced. Requirements for
switching between left and right rolls were dropped, and
simulations stuck to using right-rolled swaths only. We
simulated scenarios to prepare for a meeting with
DESDynI scientists in October 2010. These scenarios
experimented with juggling priorities of campaigns in
different cycles, in an attempt to force certain
requirements to be met. The new swaths were between
226 (QP) – 248 (LBSP) kilometers wide. Three
downlink scenarios were considered: a “minimum
mission” consisting of a limited schedule of 130 Mbps
downlinks using the Near Earth Network (NEN), a
“basic” schedule providing 300 Mbps from the Tracking
and Data Relay Satellite System (TDRSS) at 2 x 12
minutes per orbit, and an “unconstrained” schedule of
1000 Mbps at 45 minutes per orbit. The minimum
mission scenario allowed only 17% total target
coverage, the basic configuration allowed 68%
coverage, and the unconstrained case captured 98% of
all targets. A more detailed breakdown of target
coverage by discipline is shown in Tab. 1. Recorder

usage for the unconstrained mission is shown in Fig. 1;
memory usage remains low for most of the simulation,
as data is drained off by downlinks faster than it is
acquired.

Campaign Coverage,
130 Mbps

Coverage,
300 Mbps,
2 x 12 mins
/ orbit

Coverage,
1000
Mbps, 45
minutes /
orbit

Deformation 17.9 70.1 99.2

Ice 11.8 63.2 94.1

Vegetation 27.4 71.6 100.0

Overall 16.9 68.2 97.8

Table 1. Target coverage for various downlink scenarios

Figure 1. Recorder usage at 1 Gbps downlink, 45 min.

per orbit

New simulations were requested to explore the
possibility of meeting science goals with the 300 Mbps
TDRSS option, without significantly increasing the
amount of downlink available. An important element of
the new simulations was the adoption of 15 second
swath resolution, as opposed to 60 seconds in earlier
simulations. Sixty second observations are long
(covering more than 400 kilometers of arc on the
surface, assuming a 7 km/s ground speed). Targets can
be captured more efficiently with shorter observations,
reducing the likelihood that observation time and
memory are wasted on areas with no targets of interest.
The downside to this approach is that scientists prefer to
see contiguous observations, rather than seeing the
instrument repeatedly turn on and off in short spurts.
There is interest in making CLASP output more
contiguous observations instead of frequently turning
the instrument on and off, but this requirement is still
ill-defined. By adopting fifteen-second swath segments,
slightly increasing available downlink to 300Mbps at to
2 x 15 minutes per orbit, and dropping priority
requirements on campaigns, target coverage improved
to 97% overall, compared to the 68% coverage for the
original basic scenario. Target coverage for this case is
shown in Tab. 2. Memory usage is shown in Fig. 2. The
usage is highest in the earlier cycles of the simulation,

and drops off once targets that only need to be visited
once have been scheduled.

Campaign Coverage,
Revised
“basic” case

Deformation ‐ Anthropogenic 100.0

Deformation – Global strain rate 99.5

Deformation ‐ Landslides 100.0

Deformation – Volcano on land 99.8

Ice – High priority areas 99.8

Ice ‐ Land 99.3

Ice ‐ Sea 87.5

Vegetation 99.8

Overall 96.6

Table 2. Target coverage for basic case with 300 Mbps
downlink rate.

Figure 2. Recorder usage for case with 300 Mbps

downlink rate.

The next set of simulations we ran incorporated new
information from the Science team meeting to evaluate
proposed DESDynI mission scenarios for the Mission
Concept Review in January 2011. One of the
realizations coming out of the meeting was that
vegetation targets needed to be observed in both
ascending and descending passes, sometimes more than
once per season, to get adequate data. To meet these
requirements, we began implementing an ability for
CLASP to schedule targets that required multiple
constraints (e.g. both ascending and descending passes)
to be satisfied. Additionally, since swath widths were
now very similar and differed by less than 25 km, we
began running simulations using only the narrowest
swath for all observations. This avoided the problem
that CLASP does not upgrade an existing observation to
a higher-data rate mode when doing so requires the
upgraded observation to use a narrower swath (possibly
uncovering some previously-satisfied targets).

Vegetation targets covered large areas and required the
highest data-rate modes to observe, so either the amount
of downlink available had to increase, or new schemes
had to be tested for capturing vegetation targets. Thus a

0

1

2

3

0 20 40 60 80 100

Recorder Usage
"Unconstrained" case

(Tb over days)

‐2

0

2

4

6

0 20 40 60 80 100

Recorder Usage
"Basic" case
(Tb over days)

new QQP (“quasi-quad pol”) mode was introduced for
imaging vegetation targets. This mode used a lower
data rate than quad pol, but required three pairs of
ascending and descending observations per quarter to
meet science objectives. For the MCR, we simulated a
configuration where the TDRSS downlink time was
upped to 45 minutes per orbit at 300 Mbps. Even with
the increased downlink time, our simulation showed that
only 89% of the vegetation targets could be satisfied
during the July-September quarter, when these targets
were most extensive in land area. Tab. 3 shows the
target coverage for this case. Fig. 3 is a profile showing
onboard recorder usage during the course of the
simulation. Memory usage peaks at the maximum of 4
Tb and tends to fall back towards zero between each 13-
day cycle. This pattern appears because many targets
need to be scheduled within a specific cycle.

Discipline Coverage (MCR)
Deformation ‐ Anthropogenic 100.0
Deformation – Global strain
rate

100.0

Deformation – Landslides 99.8
Deformation – Volcano on
land

100.0

Ice – High priority areas 100.0
Ice ‐ Land 100.0
Ice ‐ Sea 89.0
Vegetation 88.9
Overall 96.1

Table 3. MCR Simulation target coverage

Figure 3. Memory profile for MCR simulation

After a successful MCR, DESDynI’s budget was cut in
Feburary 2011 and most work was put on hold. More
recent CLASP simulations have explored cooperation
with third parties, and tradeoffs between radar
performance and cost. These simulations have run a
variety of scenarios, including the use of two spacecraft
to capture observations, and the use of a SpaceX Dragon
capsule to serve as a platform for carrying the radar
instrument, and collaborations with the Indian Space

Research Organization and Canadian Space Agency.

One of the outcomes of these simulations is that they
suggest new improvements to make for CLASP. As
noted earlier, it is desirable for the CLASP-DESDynI
adaptation to prefer creating contiguous observations
instead of frequently starting and stopping instruments.
Simulations for mission scenarios using multiple
spacecraft also revealed a desire for spacecraft flying in
tandem to observe a target using single-pass
interferometry. We are also working continuously on
improving CLASP performance, with the goal of
initializing a simulation and performing multiple
optimization iterations within 30 minutes.

3. CLASP

CLASP decomposes the geometric and temporal
coverage problem into a set coverage problem, and then
employs priority-based optimization to improve the
schedule iteratively. First, we cover the encoding of the
problem domain and describe the inputs to CLASP.
Then, we describe how these inputs are transformed into
a set scheduling problem (with a great deal of side
constraints). We cover the choice between the pixel
representation and the polygon or shard representation.
Finally, we describe how we iterate over the creation of
various schedules, changing the weights given to each
target component (pixel or shard) and resorting and
rescheduling, until we either cannot improve the
schedule or we reach the end of our resources.

3.1. Inputs to CLASP

Fundamentally, CLASP is a coverage scheduler. That is,
its role is to produce a list of time-stamped
configurations for a spacecraft or aircraft (or collection
of spacecraft or aircraft) that results in covering as much
of the given target set as possible.

Inputs to CLASP describe 1) resources: the capacity,
initial value, and constraints on resources available
(memory, power, duty cycle), 2) instruments: what
modes are available, what modes “dominate” or can
substitute for other modes, the orbital characterization
of the spacecraft or aircraft, and limits on slewing and
footprint of the instrument, and what resource effects
(data rate, power rates, etc) are associated with each
mode, and 3) targets: what areas are we to collect data
on, how many observations are necessary, what angles
and “node” (ascending or descending) are required, and
what are the temporal requirements.

Before going into detail about resources, instruments,
and targets, a fundamental decision must be made by the
user of CLASP as to which underlying representation
we wish to use: pixels or shards. Pixels allow for fast
computation at the cost of fidelity, shards allow for
arbitrarily high fidelity at a cost of speed (in most

cases).

Pixels: when we pixelate the target body (Earth, Mars,
etc.), we produce a cartographic graph over the surface
of the body. The graph consists of cells along latitude
and longitude boundaries (with the exception of the
poles, where the graph cell is singleton and circular).
The size of the shortest edge of the graph is a constant
value for any latitude. The value is computed by
dividing the latitude by the baseline cell size and
rounding, thus the cells are guaranteed to be at least the
size of a square where each side is of the baseline cell
size. This cell size determines how many pixels cover
the planet. Fig. 4 shows a comparison of two different
pixel sizes.

Each pixel is then used as an individual component of
area for both sensor-swaths and targets.

Figure 4. Japan with varying size pixels.

Figure 5. Japan coverage solution with pixels and

shards.

Shards: shards are the smallest polygons that are
induced by all of the lines representing sensor-swaths
and targets. Each shard consists of a unique membership
of overlapping swath-segments and targets. Shards have
arbitrary resolution (almost, they are implemented using
c++ doubles, so the resolution on Earth in radians is
limited to less than a foot when values near π [at the
anti-meridian], which is well within epsilon for any of
our purposes). Fig. 5 shows a comparison of coverage
solutions using pixels and shards.

Both shards and pixels represent areas that are covered
by a set of sensors and a set of targets. The trade-off
between these different representations has to do with
the scale of the task at hand, the temporal resolution of
the sensor-swaths, and the size and complexity of the
target set. Small target sets with narrow swaths (e.g.,
aircraft flight plans) run much faster using shard
representations than using high-density pixel
representations. On the other hand, large target sets with
wide sensor-swaths often run much faster using pixel
representations. There is no hard and fast rule, so we
leave such choices up to the user.

Henceforth, we will not refer to shards or pixels, but
simply cells to represent the collection of areas that can
be sensed and are requested to be collected.

Resources: in general, CLASP has the ability to
characterize resources that fall into the integrating-
value-over-time model. All of CLASP’s resource
reasoning is based on this model. The resource is
modelled as a value over time (usually a c++ double,
but other types are available). Constraints are levied on
the resource in the form of rates over time. The resource
has both rate and integrated value limits. Clamps can
also be assigned to the upper or lower value of a
resource rate or integrated value. This is useful for
modelling resources such as memory, where a downlink
that has emptied memory halfway through (the duration
of the downlink) does not bring memory into the
negative-fill but instead simply stops at empty (and also
does not violate the limits of the resource). Time to
propagate these timelines is linear in the number of
individual time segments that it represents, and short-
circuiting does occur, e.g., when a value has reached its
clamped limit.

Hooks are available to provide CLASP resources of
arbitrary semantics, but these must be implemented by
the adaptor.

Instruments: one can think of instruments in CLASP as
the marriage between resources and targets. Instrument
definition starts with the concept of the sensor. Each
sensor provides CLASP with an area over time that is
visible from the spacecraft or aircraft. These can be

discretely described (in other words, each sensor can
represent a slew angle of the spacecraft) or can be
described using ranges (in other words, a sensor can
indicate a left or right look angle from the spacecraft,
with a slew angle and field of view prescribed). Sensors
can be pre-processed and simply indicate time-stamped
areas or can be described using SPICE [1] kernels and
simple instrument models. Sensors also equate to swaths
(areas on the surface to be imaged), and each discrete
interval that a sensor covers is a swath segment. Thus, a
swath-segment is a sensor field of view at a specific
time for a specific duration. Each swath segment is
mapped to the cells, which are in turn mapped back to
the swath segment.

For example, imagine a spacecraft that can roll left or
right, and images in a push-broom manner. We might
provide CLASP a sensor definition in the form of a file
containing a series of left-looking inner and outer
coordinates with timestamps for the left swath and then
label that sensor 1. We would provide a similar file for
the right swath and label that sensor 2. The node
(whether or not a sensor area at a certain is during the
ascending node or descending node of the orbit of the
spacecraft) is automatically computed.

Once a sensor is described and assigned its unique id,
this id can be mapped to a mode. This allows us to
indicate that various instrument modes can image only
specific areas. Extending our previous example, sensor
1 could be assigned high_resolution_left and
low_resolution_left and sensor 2 could be assigned to
both high_resolution_right and low_resolution_right
modes. Note that we only schedule modes that are
associated directly with a sensor.

Modes need not be directly assigned to sensors. Modes
can be abstract and only exist to be dominated. The
domination hierarchy of modes indicates which modes
can be used in substitution of other modes. A mode
dominates another when it can substitute it. This allows
us to model cases such as high fidelity modes that
satisfy low fidelity target requests, but low fidelity
modes not satisfying high fidelity target requests.
Extending our previous example, we would indicate that
both high_resolution_left and high_resolution_right
dominates high_resolution and we would indicate that
low_resolution_left and low_resolution_right dominate
low_resolution, but not vice versa. We would also
indicate that high_resolution dominates low_resolution.
To speed dominance checking, the transitive closure is
computed on the dominance graph, the result of which
is used to determine dominance during scheduling. This
results in a O(logn) time to compute dominance where n
is the number of dominance relationships.

Modes are also assigned resource usage. For example,
one mode might produce more data than another. Any

number of resource effects can be assigned to a mode.
Extending our example, we would indicate that
high_resolution mode uses memory at a rate of 1Gbps,
but low_resolution mode uses memory only at 1Mbps.

Minimum transition duration requirements can also be
assigned to modes. This allows us to model the time it
takes to transition from one mode to the next. For
example, if it takes no time to switch between high and
low resolution, but it takes 1 minute to slew the
spacecraft, we would indicate that the transition
between high_resolution_left and low_resolution_left is
0 seconds, but that the transition between
high_resolution_left and high_resolution_right is 60
seconds. Transition constraints are only defined for
sensor-level modes (not abstract modes).

Targets: targets are described using maps of areas
(primarily using GoogleEarth KML files). Targets may
be polygons or points. Each target includes a campaign
statement that describes what is required to image the
target. The campaign statement includes the mode
(sensor-level or abstract) priority, how many times the
target must be collected, the constraints on look angle
(left and right) and node (ascending or descending).
Temporal constraints can be described for observations,
including disjunctive intervals.

3.2. Transforming the Targets

Targets and swath segments are all eventually assigned
to a set of cells (pixels or shards). The individual cells
are the smallest component of area CLASP reasons
about. Targets are broken down into a set of cell-targets.
These cell-targets are what are scheduled by the
scheduling engine. Each cell-target consists of a set of
constraints that must be met (priority, look angle, node,
mode, etc.) and a scheduling priority (not to be confused
with target priority).

3.3. Iterative scheduling

The task at hand is to assign modes over time that
maximize our coverage objective. Our approach is to
use squeaky-wheel optimization to schedule the cell-
targets. Squeaky-wheel optimization (SWO) [5] has two
pre-requisites: 1) each task to be scheduled has a
scheduler priority that is modified during optimization
and 2) a greedy scheduler exists that can schedule the
tasks according to this priority. SWO is used primarily
when the goal is to schedule as many tasks as possible
with the assumption that we have more tasks than
capacity. SWO terminates when all tasks have been
scheduled or when a time bound is exceeded. During
our outline of the scheduling algorithm we will see that
we have modified SWO in several different ways.

The first step then is to initialize the scheduler priority
for each cell-target. Each is assigned a scheduler-

priority of 0.

Then, at each iteration, we order the cell-targets by
priority (in ascending order), scheduler priority (in
descending order), then by the earliest visibility, and
then randomly. Here we see that CLASP is a strict
priority order scheduler, i.e., no number of lower
priority tasks can pre-empt a higher priority task. Thus,
the first time through the loop, we are scheduling in
temporal order.

So, for each cell-target, we find the first possible
scheduling that violates no constraints, where
scheduling means assignment to a swath segment and
sensor-level mode. It should be noted that swath
segments are considered mutually exclusive. Some
targets are expressed as constraint pairs, so in that case
we must find a scheduling that satisfies both sets of
constraints. Once a time is found, the cell-target is
assigned to that time. Determining visibility is very fast
(constant time) as the cell-target maintains a reference
to the cell, which has a reference to the sensors that
cover that cell. In the case that a sensor is continuously
adjustable, we simply check to see if the width of the
current range of included cells plus the cell-target is
covered by the field of view of the instrument. This is a
least-commitment strategy that allows us to avoid
painting ourselves into a corner with respect to choosing
pointing angles for the sensor.

Note that determining whether or not a cell-target can
be assigned at a time is not a simple matter of checking
the visibility. If a mode is already active over the
interval, then we need to see if that mode is compatible
with or could be upgraded to a mode that dominates the
requested cell-target mode and the current active mode.
If a mode is not already active over the interval, then we
need to find the "closest" mode that can be
accommodated by the resources, dominates or is
equivalent to the cell-target mode, and violates no
transition duration constraints. The most costly of these
checks are checks against resources.

When we set a new mode over an interval, we are
assigning a mode to a swath segment. At this time, we
perform synergistic scheduling: scheduling all other
cell-targets that can be scheduled during this sensor.
First, we find the swath segment associated with this
cell-target. This requires no time as it is maintained as a
by-product of determining that this cell-target can be
scheduled in the first place, although the original cost of
finding this is still constant time through references to
the cell. Once we have a sensor, we can then loop
through all cells associated with that sensor and loop
through all cell-targets associated with each cell. We
check for compatibility. We disallow changing modes
as this leads to priority inversion. We also disallow
expanding the width of the current field of view for

continuous sensors for the same reason. We schedule
(assign to this swath segment) all cell-targets that are
compatible. We disallow scheduling of pair-observation
targets as empirically we have determined that a
decrease in performance is realized as previous results
of checking one half of the pair are not cached for future
evaluation.

After generating each schedule, we evaluate how well
we did based on the area covered. In the case of pixel
representations, we simply use the count. In the case of
shard representations, we use the sum of the area. We
keep a log of our performance and short-circuit when a
long enough cycle of stagnant performance is detected.

Cell-targets that are not scheduled during this round
have their scheduler priority increased, i.e., the squeaky
wheel gets the grease. For previous versions, we kept
track of the highest quality schedule that each cell-target
participated in. This allowed us to find poison targets
that, when introduced into a schedule, forced the overall
quality of the schedule to be exceedingly low. We then
could remove the targets and stop them from dragging
down the overall quality of our search (basically
resulting in filling the valleys), i.e., the squeaky wheel
gets greased. But, for large problem instances, we
discovered that no individual cell-target was poisonous,
thus this optimization actually reduces the overall
performance due to the slight increase in resources
required to track it.

3.4. Pseudo code

Here we present some pseudo code to help make more
concrete our algorithms.

Collect Shards

(1) let S be the set of swath segments
(2) let T be the set of targets
(3) let E be a set of edges
(4) let C be the resultant set of polygons (the

shards)
(5) for each s S, for each e s.edges
(6) add e to E
(7) end for, end for
(8) for each t T, for each e t.edges
(9) add e to E
(10) end for, end for
(11) while e E, e' E | e ≠ e' and e intersects e'

and the intersection is not at either end of e
(12) remove e from E
(13) split e into two edges at the intersection

point and reinsert both into E
(14) end while
(15) while |E| > 0
(16) e = E.pop
(17) if e is not vertical
(18) let p be a new polygon where e is a

southern edge
(19) let e' = e
(20) do
(21) add e' to p.edges
(22) let e' be the next edge adjacent to e

following a clockwise motion
(23) if e' is a southern edge of p
(24) remove e' from E
(25) end if
(26) until e' = e
(27) add p to C
(28) end if
(29) end while

Schedule

(1) let C be the set of cell-targets
(2) let S be a set of (mode, swath-segment)
(3) let F be the set of failed cell-targets
(4) do
(5) let F = {}
(6) sort C according to scheduler priority
(7) for each c C
(8) if we find a mode m and swath segment s |

(m, s) satisfies c
(9) add (m, s) to S
(10) for each c' in S.cell.cell-targets
(11) if (m, s) satisfies c'
(12) remove c' from C
(13) end if
(14) end for
(15) else
(16) add c to F
(17) end if
(18) end for
(19) for each c F
(20) increment c.scheduler-priority
(21) end for
(22) until |F| = 0 or we have no more time

3.5. Other Adaptations of CLASP

Other adaptations/applications of CLASP to spacecraft
scheduling include the THEMIS prototype [8] and
scheduling for the proposed HyspIRI IPM [3]. It has
also been baselined as the IPE CubeSat ground system
[2].

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. Copyright 2012 California Institute of
Technology. Government sponsorship acknowledged.

4. REFERENCES

[1] Acton, C., Backman, N., Elson, L., Semenov, B.,
Turner, F., Wright, E., “Extending NASA’s SPICE
ancillary information system to meet future mission
needs,” SpaceOps 2002, Houston, Texas, October

2002.

[2] S. Chien, J. Doubleday, K. Ortega, T. Flatley, G.
Crum, A. Geist, M. Lin, A. Williams, J. Bellardo, J.
Puig-Suari, E. Stanton, E. Yee, “Onboard
Processing and Autonomous Operations on the
IPEX Cubesat Mission,” Government Cubesat
Symposium, Moffett Field, CA, April 2012.

[3] S. Chien, D. Silverman, G. Rabideau, D. Mandl, J.
Hengemihle, “A Direct Broadcast Operations
Concept for the HyspIRI Mission,” Space
Operations 2010, Huntsville, AL, April 2010.

[4] “DESDynI”, http://desdyni.jpl.nasa.gov

[5] Donnellan, A., Rosen, P., Ranson, K.J., Zebker, H.,
"Deformation, Ecosystem Structure, and Dynamics
of Ice (DESDynI)," IGARSS 2008, Boston,
Massachusetts, July 2008.

[6] Joslin, D. E., and Clements, D. P., “Squeaky wheel
optimization,” J. Artif. Intell. Res., vol. 10, pp. 353–
373, 1999

[7] Knight, R., Hu, S., “Compressed Large-scale
Activity Scheduling and Planning (CLASP) applied
to DESDynI,” Proceedings of the Sixth
International Workshop in Planning and Scheduling
for Space, Pasadena, CA, July 2009.

[8] G. Rabideau, S. Chien, D. Mclaren, R. Knight, S.
Anwar, G. Mehall, “A Tool for Scheduling
THEMIS Observations, International Symposium
on Space Artificial Intelligence, Robotics, and
Automation for Space, Sapporo, Japan, August
2010.

[9] Rosen, P., Eisen, H., Shen, Y., Hensley, S. Shaffer,
S., Veilleux, L, Ranson, J., Dress, A., Blair, B.,
Luthcke, S., Dubayah, R., Hager, B. H., "Making
the most of DESDynI: An Overview of the
Proposed Mission," IGARSS 2011, Vancouver,
Canada, July 2011.

